A TOUR AROUND THE SHOWROOM: TAKING A SPIN WITH NEW HMT-WPC DEVELOPMENTS

Thomas E. Workoff^{1,2}, Faye E. Barthold^{1,3}, Michael J. Bodner¹, Brian Cosgrove⁴, Anthony Fracasso¹, and David R. Novak¹

¹NOAA/NWS/Weather Prediction Center, College Park, MD ²Systems Research Group, Inc., Colorado Springs, CO

³I.M. Systems Group, Inc., Rockville, MD

⁴NOAA/NWS/Office of Hydrologic Development, Silver Spring, MD

HMT-WPC: What do we do?

Accelerate the transfer of scientific and technological innovations into operations to enhance WPC products and services.

The Need for Flash Flood Verification

- There is no consistent CONUS database of flash flood observations
- Mesoscale Precipitation Discussion (MPD)
 - Began April, 2013 (prototype 2012)
 - Event driven
 - Highlight regions where heavy rainfall may lead to flash flooding (1-6 hrs)
- Flash Flood and Intense Rainfall Exp
 - Experimental Flash Flood forecasts
 - Development/evaluation of new forecast guidance and tools

The Need for Flash Flood Verification

- There is no consistent CONUS database of flash flood observations
- Proper verification is very difficult.....

The Need for Flash Flood Verification

- There is was no consistent CONUS database of flash flood observations
- Proper verification is very difficult.....

Three-Pronged Real-time Postgres Hydrologic Verification Database

Postgres Component Database	Strengths	Weaknesses
NWS Local Storm Reports	-Official, accepted NWS product -Relatively dense coverage -Descriptive language	-Subjective description -Coverage depends on population density and time of day -Location, time, categorization errors
USGS Stream Gauge Observations	-Objective measure of stream condition (flow) -Official, accepted USGS stream flow data -Large number of gauges	-Subset of gauges with actual flood stage limited -Differentiating flood/flash flood is subjective -Regulation complications -Coverage can be sparse, limited to rivers
mPING Crowd-Sourced Reports	-Potential for dense reports	-Subjective -Dependent on participation -Quality control issues given non-professional source -Differentiating flood/flash flood is not possible -Currently sparse coverage

USGS Stream Gauges:

- 1) Flood stage exceeded? 2 year recurrence interval?
- 2) 'Sharp' rate of rise?
- 3) Basin <2000 km^{2?}

Three-Pronged Real-time Postgres Hydrologic Verification Database

- Database updated every 15 mins
- Creates archive; can request data for user-defined time periods
- · Allowed for advancements in FF verification:

Red – flash flood LSR Blue – flood LSR Orange – mPING Magenta - USGS

Three-Pronged Real-time Postgres Hydrologic Verification Database

- Database updated every 15 mins
- Creates archive; can request data for user-defined time periods
- Allowed for advancements in FF verification:

"Practically Perfect" Analysis Technique:

- Converts point observations into probabilistic forecast areas via Gaussian weighted function
- Consider including additional data:
 Heavy rain LSRs
 Flash flood warnings
 OPE
- Consider weighting datasets differently

• 2013 Winter Weather Experiment: Can we accurately predict winter weather at days 4 & 5?

• 2013 Winter Weather Experiment: Can we accurately predict winter weather at days 4 & 5?

- Day 4-7 Probability of >.1" of frozen precipitation
 - 24 hour forecasts: day 4, 5, 6 and 7
- Develop Guidance:
 - Disaggregate WPC Day 4-5, Day 6-7 QPF
 - *Use GEFS and ECENS to generate CDF (70 members) to extract probabilities of >.1" QPF*
 - Combine with ensemble probability of frozen precipitation from GEFS and ECENS

Prob of Winter Precip >

- Day 4-7 Probability of >.1" of frozen precipitation
 - 24 hour forecasts: day 4, 5, 6 and 7
- Develop Guidance:
 - Disaggregate WPC Day 4-5, Day 6-7 QPF
 - Use GEFS and ECENS to generate CDF to extract probabilities of >.1" QPF
 - Combine with ensemble probability of frozen precipitation from GEFS and ECENS
- Tested in 2014 Winter Weather Experiment

Results were promising... but not perfect:

- Predictibility diminishes toward day 7 (duh...)
- 2) Multi-ensemble approach is most effective
 - Guidance was under-dispersed
- 3) GEFS p-type was problematic
 - > Conditional on precip caused problems
- 4) What else can be done?
 - Different thresholds? Freezing rain?

- Implemented Day 4-7 Winter Weather prototype (WFOs)
 - Positive feedback; calls for additional thresholds
- Improve probabilistic guidance:
 - Increase ensemble to 90 members (CMCE), consistent p-type

- 2015 Winter Weather Experiment:
 - >.5" liquid equivalent in the form of snow
 - > .01" freezing rain

- 2015 Winter Weather Experiment:
 - >.5" liquid equivalent in the form of snow
 - > .01" freezing rain
- Results were promising......

- 2015 Winter Weather Experiment:
 - >.5" liquid equivalent in the form of snow
 - > .01" freezing rain
- Results were promising......

- 2015 Winter Weather Experiment:
 - >.5" liquid equivalent in the form of snow
 - > .01" freezing rain
- · Results were promising.....
- What's next??
 - Plans go to 'experimental' with *Probability* >.1" *Frozen Precipitation* product next winter
 - Continue development of additional thresholds
 - Continue development of snow (liquid equivalent) and freezing rain probabilistic products
 - Prototype??